«

»

Eki 23

Matlab runga-kutta 4th&5th&6th order (Matlab 4,5 ve 6. dereceden runga-kutta yöntemi)

4.dereceden matlab runga-kutta
t0=1; %başlangıç zamanı
x0=3; %başlangıç koşulu
x=[x0];
t=[t0];
xg=[6/(5-3*t0^2)];% Mutlak çözüm
h=0.05;
for i=1:5
K1=t0*x0^2;
K2=(t0+(1/2)*h)*(x0+(1/2)*h*K1)^2;
K3=(t0+(1/2)*h)*(x0+(1/2)*h*K2)^2;
K4=(t0+h)*(x0+h*K3)^2;
xyeni=x0+(1/6)*h*(K1+2*K2+2*K3+K4);
t0=t0+h;
xg=[xg 6/(5-3*t0^2)];
x=[x xyeni];
t=[t t0];
x0=xyeni;
end
plot(t, x,’r-d’)
hold on
plot(t,xg,’k-s’)

//———————————————————————

4 ve 5 . dereceden

//———————————————————————
function [wi, ti, count] = rkf45 ( RHS, t0, x0, tf, parms )

%RKF45 approximate the solution of the initial value problem
%
% x'(t) = RHS( t, x ), x(t0) = x0
%
% using Runge-Kutta-Fehlberg 4th order – 5th order method –
% this routine will work for a system of first-order equations
% as well as for a single equation
%
% calling sequences:
% [wi, ti] = rkf45 ( RHS, t0, x0, tf, parms )
% rkf45 ( RHS, t0, x0, tf, parms )
%
% inputs:
% RHS string containing name of m-file defining the
% right-hand side of the differential equation; the
% m-file must take two inputs – first, the value of
% the independent variable; second, the value of the
% dependent variable
% t0 initial value of the independent variable
% x0 initial value of the dependent variable(s)
% if solving a system of equations, this should be a
% row vector containing all initial values
% tf final value of the independent variable
% parms three component vector of paramter values
% parm(1) minimum allowed step size
% parm(2) maximum allowed step size
% parm(3) absolute error tolerance
%
% output:
% wi vector / matrix containing values of the approximate
% solution to the differential equation
% ti vector containing the values of the independent
% variable at which an approximate solution has been
% obtained
% count number of function evaluations used in advancing the
% solution from t = t0 to t = tf
%

neqn = length ( x0 );
hmin = parms(1);
hmax = parms(2);
TOL = parms(3);

ti(1) = t0;
wi(1:neqn, 1) = x0′;
count = 0;
h = hmax;
i = 2;

while ( t0 < tf )
k1 = h * feval ( RHS, t0, x0 );
k2 = h * feval ( RHS, t0 + h/4, x0 + k1/4 );
k3 = h * feval ( RHS, t0 + 3*h/8, x0 + 3*k1/32 + 9*k2/32 );
k4 = h * feval ( RHS, t0 + 12*h/13, x0 + 1932*k1/2197 – 7200*k2/2197 + 7296*k3/2197 );
k5 = h * feval ( RHS, t0 + h, x0 + 439*k1/216 – 8*k2 + 3680*k3/513 – 845*k4/4104 );
k6 = h * feval ( RHS, t0 + h/2, x0 – 8*k1/27 + 2*k2 – 3544*k3/2565 + 1859*k4/4104 – 11*k5/40 );

R = max ( abs ( k1/360 – 128*k3/4275 – 2197*k4/75240 + k5/50 + 2*k6/55 ) / h );
q = 0.84 * ( TOL / R ) ^ (1/4);
count = count + 6;

if ( R < TOL )
x0 = x0 + 16*k1/135 + 6656*k3/12825 + 28561*k4/56430 – 9*k5/50 + 2*k6/55;
% x0 = x0 + 25*k1/216 + 1408*k3/2565 + 2197*k4/4104 – k5/5;
t0 = t0 + h;

ti(i) = t0;
wi(1:neqn, i) = x0′;
i = i + 1;
end;

h = min ( max ( q, 0.1 ), 4.0 ) * h;
if ( h > hmax ) h = hmax; end;
if ( t0 + h > tf )
h = tf – t0;
elseif ( h < hmin )
disp ( ‘Solution requires step size smaller than minimum’ );
return;
end;
end;
———————-
//———————————————————————

5 ve 6 . dereceden

//———————————————————————
function [wi, ti, count] = rkv56 ( RHS, t0, x0, tf, parms )

%RKV56 approximate the solution of the initial value problem
%
% x'(t) = RHS( t, x ), x(t0) = x0
%
% using Runge-Kutta-Verner 5th order – 6th order method –
% this routine will work for a system of first-order equations
% as well as for a single equation
%
% calling sequences:
% [wi, ti] = rkv56 ( RHS, t0, x0, tf, parms )
% rkv56 ( RHS, t0, x0, tf, parms )
%
% inputs:
% RHS string containing name of m-file defining the
% right-hand side of the differential equation; the
% m-file must take two inputs – first, the value of
% the independent variable; second, the value of the
% dependent variable
% t0 initial value of the independent variable
% x0 initial value of the dependent variable(s)
% if solving a system of equations, this should be a
% row vector containing all initial values
% tf final value of the independent variable
% parms three component vector of paramter values
% parm(1) minimum allowed step size
% parm(2) maximum allowed step size
% parm(3) absolute error tolerance
%
% output:
% wi vector / matrix containing values of the approximate
% solution to the differential equation
% ti vector containing the values of the independent
% variable at which an approximate solution has been
% obtained
% count number of function evaluations used in advancing the
% solution from t = t0 to t = tf
%

neqn = length ( x0 );
hmin = parms(1);
hmax = parms(2);
TOL = parms(3);

ti(1) = t0;
wi(1:neqn, 1) = x0′;
count = 0;
h = hmax;
i = 2;

while ( t0 < tf )
k1 = h * feval ( RHS, t0, x0 );
k2 = h * feval ( RHS, t0 + h/6, x0 + k1/6 );
k3 = h * feval ( RHS, t0 + 4*h/15, x0 + 4*k1/75 + 16*k2/75 );
k4 = h * feval ( RHS, t0 + 2*h/3, x0 + 5*k1/6 – 8*k2/3 + 5*k3/2 );
k5 = h * feval ( RHS, t0 + 5*h/6, x0 – 165*k1/64 + 55*k2/6 – 425*k3/64 + 85*k4/96 );
k6 = h * feval ( RHS, t0 + h, x0 + 12*k1/5 – 8*k2 + 4015*k3/612 – 11*k4/36 + 88*k5/255 );
k7 = h * feval ( RHS, t0 + h/15, x0 – 8263*k1/15000 + 124*k2/75 – 643*k3/680 – 81*k4/250 + 2484*k5/10625 );
k8 = h * feval ( RHS, t0 + h, x0 + 3501*k1/1720 – 300*k2/43 + 297275*k3/52632 – 319*k4/2322 + 24068*k5/84065 + 3850*k7/26703 );

R = max ( abs ( k1/160 + 125*k3/17952 – k4/144 + 12*k5/1955 + 3*k6/44 – 125*k7/11592 – 43*k8/616 ) / h );
q = 0.87 * ( TOL / R ) ^ (1/5);
count = count + 8;

if ( R < TOL )
x0 = x0 + 3*k1/40 + 875*k3/2244 + 23*k4/72 + 264*k5/1955 + 125*k7/11592 + 43*k8/616;
% x0 = x0 + 13*k1/160 + 2375*k3/5984 + 5*k4/16 + 12*k5/85 + 3*k6/44;
t0 = t0 + h;

ti(i) = t0;
wi(1:neqn, i) = x0′;
i = i + 1;
end;

h = min ( max ( q, 0.1 ), 4.0 ) * h;
if ( h > hmax ) h = hmax; end;
if ( t0 + h > tf )
h = tf – t0;
elseif ( h < hmin )
disp ( ‘Solution requires step size smaller than minimum’ );
return;
end;
end;
—————————————————–

1 yorum

  1. blog w dourado

    However, any information should not just present the nicee
    sides of the oin and also (most importantly), boost the comfort
    showing the negative possibilities. When they ddo experience this latter scenario, is it
    any wonder your visitors get upset. Jeff Maehl held 9 pass for 133 yards as well ass 1 2 indicate conversion.

blog w dourado için bir cevap yazın Cevabı iptal et

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

AlphaOmega Captcha Classica  –  Enter Security Code
     
 

Şu HTML etiketlerini ve özelliklerini kullanabilirsiniz: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>